Generalized Abel Inversion Using Extended Hat Functions Operational Matrix
نویسندگان
چکیده
منابع مشابه
Generalized Abel Inversion Using Homotopy Perturbation Method
Many problems in physics like reconstruction of the radially distributed emissivity from the line-of-sight projected intensity, the 3-D image reconstruction from cone beam projections in computerized tomography, etc. lead naturally, in the case of radial symmetry, to the study of Abel’s type integral equation. Obtaining the physically relevant quantity from the measured one requires, therefore ...
متن کاملSolution of the Generalized Abel Integral Equation by Using Almost Bernstein Operational Matrix
A direct almost Bernstein operational matrix of integration is used to propose a stable algorithm for numerical inversion of the generalized Abel integral equation. The applicability of the earlier proposed methods was restricted to the numerical inversion of a part of the generalized Abel integral equation. The method is quite accurate and stable as illustrated by applying it to intensity data...
متن کاملAbel inversion using total-variation regularization
Abstract In the case of radiography of a cylindrically symmetric object, the Abel transform is useful for describing the tomographic measurement operator. The inverse of this operator is unbounded, so regularization is required for the computation of satisfactory inversions. We introduce the use of the total variation seminorm for this purpose, and prove the existence and uniqueness of solution...
متن کاملExtended Triangular Operational Matrix For Solving Fractional Population Growth Model
In this paper, we apply the extended triangular operational matrices of fractional order to solve the fractional voltrra model for population growth of a species in a closed system. The fractional derivative is considered in the Caputo sense. This technique is based on generalized operational matrix of triangular functions. The introduced method reduces the proposed problem for solving a syst...
متن کاملGeneralized matrix functions, determinant and permanent
In this paper, using permutation matrices or symmetric matrices, necessary and sufficient conditions are given for a generalized matrix function to be the determinant or the permanent. We prove that a generalized matrix function is the determinant or the permanent if and only if it preserves the product of symmetric permutation matrices. Also we show that a generalized matrix function is the de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Analysis
سال: 2013
ISSN: 2314-498X,2314-4998
DOI: 10.1155/2013/652541